Фибоначчиева система счисления

Напомним, что числами Фибоначчи называется последовательность чисел, получаемая по следующему правилу: f0 = f1 = 1, fk = fk - 1 + fk - 2, где k > 1.

Фибоначчиева система счисления (ФСС) — это позиционная система счисления с алфавитом, состоящим из двух цифр: 0 и 1, а ее базисом является последовательность чисел Фибоначчи 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, … (f0 = 1 в базис не включается). В фибоначчиевой системе, как и во всех позиционных системах счисления, «вес» каждого разряда определяется соответствующим элементом базиса этой системы. Так, 10011fib = 1 × 8 + 0 × 5 + 0 × 3 + 1 × 2 + 1 × 1 = 11. Если не наложить дополнительных ограничений, то представление чисел в такой системе счисления оказывается неоднозначным.

Например, 1110 = 1111fib = 10011fib = 10100fib

Однако, нетрудно доказать, что существует единственное представление данного числа в фибоначчиевой системе счисления, которое не содержит двух единиц подряд. Такое представление называется каноническим. Требуется написать программу, которая для натурального числа N будет выводить его каноническое представление в ФСС.

Входные данные

Во входном файле записано единственное число N (1 ≤ N ≤ 2· 109).

Выходные данные

Единственная строка выходного файла должна содержать искомое представление.

Примеры
Входные данные
5
Выходные данные
1000
Входные данные
11
Выходные данные
10100

Задача на informatics